Implications of multiple scattering on the assessment of black carbon aerosol radiative forcing

Authors:

Vijayakumar S. Nair, S. Suresh Babu, K. Krishna Moorthy, S.K. Satheesh
Resource type:
Scientific Publications
Publishing year:
2014

Abstract - The effects of radiative coupling between scattering and absorbing aerosols, in an external mixture, on the aerosol radiative forcing (ARF) due to black carbon (BC), its sensitivity to the composite aerosol loading and composition, and surface reflectance are investigated using radiative transfer model simulations. The ARF due to BC is found to depend significantly on the optical properties of the ‘neighboring’ (non-BC) aerosol species. The scattering due to these species significantly increases the top of the atmospheric warming due to black carbon aerosols, and significant changes in the radiative forcing efficiency of BC. This is especially significant over dark surfaces (such as oceans), despite the ARF due to BC being higher over snow and land-surfaces. The spatial heterogeneity of this effect (coupling or multiple scattering by neighboring aerosol species) imposes large uncertainty in the estimation ARF due to BC aerosols, especially over the oceans.
Vijayakumar S. Nair, S. Suresh Babu, K. Krishna Moorthy, S.K. Satheesh (2014) Implications of multiple scattering on the assessment of black carbon aerosol radiative forcing, JOURNAL OF QUANTITATIVE SPECTROSCOPY AND RADIATIVE TRANSFER 148:134-140.

Vertical Tabs

Tags

Pollutants (SLCPs):
Regions:

Pollutants (SLCP)

Back to Top