A variety of local, national, regional, and international policies hold the potential to control black carbon emissions from the maritime sector. At the local level, progressive ports such as the Port of Rotterdam and the San Pedro Bay Ports in Southern California have adopted comprehensive clean ports programs to control air pollution and other environmental impacts from operations. These programs include a variety of PM and BC mitigation measures including diesel engine retrofit, replacement, and repower; local fuel incentives for fuel switching and speed reduction; development of infrastructure to support alternative fuel use; and the development of recognition programs for operators and terminals making extra efforts to reduce emissions. Cold ironing (shore power) is another key intervention for reducing marine-side PM/BC emissions at ports, which compliments landside emissions reduction. An evaluation process to determine the best methods for each port will involve stakeholder consultations, evaluation of emissions & any ongoing interventions as well as assessment of viable best practices/technology for a given country.
Similarly, national, regional, and international policies to reduce BC emissions from domestic navigation and international shipping are in various stages of development. These include national engine PM standards for smaller vessels used for domestic navigation (C1/C1 engines); international engine standards for large vessels adopted by the IMO; local, regional, and global fuel sulphur requirements; and, more speculatively, regional emission control policies to protect particularly sensitive areas such as the Arctic.
Although the removal of sulfur from fossil fuels can be linked with a reduction in refraction and shading (atmospheric cooling), black carbon is the only aerosol that produces a warming effect (20-yr GWP of 3,200). The IMO has already set progressively stricter fuel sulfur standards which will facilitate the use of technologies such as diesel particulate filters, however there are other mechanisms available for the reduction of BC including seawater scrubbers, slow steaming, biodiesel and LNG. It is important to note not only the technology impairment of high sulfur fuels but also auxiliary impacts of sulfur fine particles, such as acid rain leading to regional acidification of water bodies and region haze. Since IMO continues to progress its work on marine BC emissions, the lead partners anticipate significant opportunities to collaborate on research. IMO Secretariat will be invited to each marine BC technical workshop, and project documentation, including meeting notes, consultant reports, and key deliverables (i.e. refined inventory and technology performance database), will be shared with Secretariat staff upon completion. It is also anticipated that CCAC member nations will submit working papers summarizing project findings directly to the IMO’s environment committee.
Meanwhile, activities in the Ports area support efforts in four CCAC country ports (“implementing ports”) to lead their respective regions in developing PM/BC emission reduction strategies with support from developed CCAC country ports (“supporting ports”). The implementing ports were selected based on engagement on relevant issues (including interest in engaging with the CCAC), potential regional impact (they are key trade ports in their regions and have large potential to set off regional domino effect which in turn increases chances of ‘going to scale), contribution to local air pollution, as well as throughput and growth forecasts.